Determinants of enzyme thermostability observed in the molecular structure of Thermus aquaticus D-glyceraldehyde-3-phosphate dehydrogenase at 25 Angstroms Resolution.

نویسندگان

  • J J Tanner
  • R M Hecht
  • K L Krause
چکیده

The crystal structure of holo D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the extreme thermophile Thermus aquaticus has been solved at 2.5 Angstroms resolution. To study the determinants of thermostability, we compare our structure to four other GAPDHs. Salt links, hydrogen bonds, buried surface area, packing density, surface to volume ratio, and stabilization of alpha-helices and beta-turns are analyzed. We find a strong correlation between thermostability and the number of hydrogen bonds between charged side chains and neutral partners. These charged-neutral hydrogen bonds provide electrostatic stabilization without the heavy desolvation penalty of salt links. The stability of thermophilic GAPDHs is also correlated with the number of intrasubunit salt links and total hydrogen bonds. Charged residues, therefore, play a dual role in stabilization by participating not only in salt links but also in hydrogen bonds with a neutral partner. Hydrophobic effects allow for discrimination between thermophiles and psychrophiles, but not within the GAPDH thermophiles. There is, however, an association between thermostability and decreasing enzyme surface to volume ratio. Finally, we describe several interactions present in both our GAPDH and a hyperthermophilic GAPDH that are absent in the less thermostable GAPDHs. These include a four-residue salt link network, a hydrogen bond near the active site, an intersubunit salt link, and several buried Ile residues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-resolution structure of human D-glyceraldehyde-3-phosphate dehydrogenase.

GAPDH (D-glyceraldehyde-3-phosphate dehydrogenase) is a multifunctional protein that is a target for the design of antitrypanosomatid and anti-apoptosis drugs. Here, the first high-resolution (1.75 Angstroms) structure of a human GAPDH is reported. The structure shows that the intersubunit selectivity cleft that has been leveraged in the design of antitrypanosomatid compounds is closed in human...

متن کامل

Conformational stability of lactate dehydrogenase from Bacillus thermus-aquaticus [proceedings].

Proteins are synthesized and enzymes can function at surprisingly high temperatures in thermophilic micro-organisms. This temperature is about 90°C in the case of Bacillus thermus-aquaticus (A.T.C.C. 25104). Lactate dehydrogenase (EC 1.1.1.27) was isolated from this micro-organism, and the temperature dependence of the rate of pyruvate reduction and thermodynamic parameters of heat inactivation...

متن کامل

Structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma brucei determined from Laue data.

The three-dimensional structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase [D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.12.1.12] from the sleeping-sickness parasite Trypanosoma brucei was solved by molecular replacement at 3.2-A resolution with an x-ray data set collected by the Laue method. For data collection, three crystals were exposed to the polychr...

متن کامل

Crystal structure of D-Hydantoinase from Burkholderia pickettii at a resolution of 2.7 Angstroms: insights into the molecular basis of enzyme thermostability.

D-Hydantoinase (D-HYD) is an industrial enzyme that is widely used in the production of D-amino acids which are precursors for semisynthesis of antibiotics, peptides, and pesticides. This report describes the crystal structure of D-hydantoinase from Burkholderia pickettii (HYD(Bp)) at a 2.7-A resolution. The structure of HYD(Bp) consists of a core (alpha/beta)(8) triose phosphate isomerase barr...

متن کامل

Characterization of two glyceraldehyde-3-phosphate dehydrogenase isoenzymes from the pentalenolactone producer Streptomyces arenae.

Pentalenolactone (PL) irreversibly inactivates the enzyme glyceraldehyde-3-phosphate dehydrogenase [D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating)] (EC 1.2.1.12) and thus is a potent inhibitor of glycolysis in both procaryotic and eucaryotic cells. We showed that PL-producing strain Streptomyces arenae TU469 contains a PL-insensitive glyceraldehyde-3-phosphate dehydrogenase ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 35 8  شماره 

صفحات  -

تاریخ انتشار 1996